─ HBLA und Bundesamt
Klosterneuburg
Wein- und Obstbau

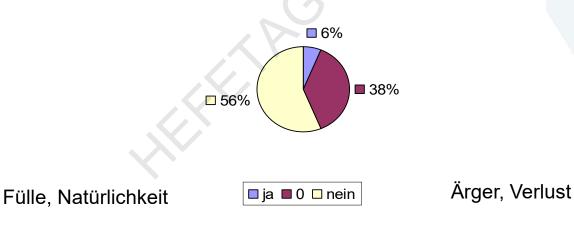
Kaliumpolyaspartat

Ein neues Mittel zur Weinsteinstabilisierung

HR Dipl.-Ing Dr. Reinhard Eder
Dipl.-Ing Christian Philipp
HBLA u. BA für Wein- und Obstbau
Klosterneuburg
11. Hefetagung 4.7.2019

Markus Willach
Mario Strauss
Diplomanden der
HBLA u. BA für Wein- und Obstbau,
Klosterneuburg

Eine Einrichtung des Bundesministeriums für Nachhaltigkeit und Tourismus


KRISTALLE IM WEIN WAS EMPFINDET DER KONSUMENT

Befragung von Konsumenten in einem Weinausschankbetrieb in Niederösterreich (2008):

JA: Weinstein wünsche ich mir öfters im Glas = 6 %0: Weinstein enthalten oder nicht, ist mir gleichgültig = 38 %

NEIN: Weinstein ist mir unangenehm und ein absolutes Tabu im Wein = 56 %

Ergebnis der Befragung in Prozent

Fazit: Einstellung der Konsumenten zum Weinstein ändert sich

Weinstein = Kaliumhydrogentartrat (KHT):

Saures Kaliumsalz der Weinsäure

Weinstein in wässriger Lösung bei Zimmertemperatur relativ gut löslich (4,4 g/l, 15°C).

Verringerung der Löslichkeit:

- steigender Alkoholgehalt
- tiefe Temperaturen
- hoher Kalium bzw. Weinsäuregehalt
- Anwesenheit von Impfkristallen

Im Zuge der alk. Gärung fällt Weinstein aus.

Abnahme des Weinsäuregehaltes i.d.R. um 0,5 bis 1,5 g/l.

1 g ausgefallener Weinstein = 0,4 g/l titrierbare Säure

Weinsteinstablisierung - Methoden

a) SUBTRAKTIVE VERFAHREN

Entfernung instabilen Weinsteins durch Kälte

Kurzzeit-Tieftemperatur: -4°C, 7 Tage

Langzeit-Kühltemperatur: mehrere Wochen +6-8°C

• Elektrodialyse: physikalische Entfernung von K⁺ und T²⁻

B) ADDITIVE VERFAHREN: Zusatz von Inhibitoren

- Metaweinsäure
- Gummi arabicum (seit 1995)
- Mannoproteinen (seit 2005)
- Carboxymethylcellulose (seit 2009)

Kaliumpolyaspartat

- Aus L-Asparaginsäure hergestellt
- Zulassung: 2017 (OIV)
- Höchstmenge: 10 g/hl
- Flüssige Form
- Wirkung als Schutzkolloid

Eine Einrichtung des Bundesministeriums für Nachhaltigkeit und Tourismus

Ziele der Arbeit

- Überprüfung der Wirksamkeit von Kaliumpolyaspartat (KPA) im Vergleich zu CMC und Metaweinsäure
 - Beurteilung anhand der Sorten Rheinriesling und Chardonnay
 - Einsatz der erlaubten sowie der halben Höchstmenge von KPA
 - Einsatz von CMC und Metaweinsäure nach erlaubter Höchstaufwandmenge
 - Überprüfung der Wirksamkeit nach künstlicher Erhöhung der Instabilität
 - Lagerung bei 2 °C und 20 °C

Ziele der Arbeit

- Überprüfung der Weinsteinstabilität durch Leitfähigkeitsmessung (CheckStab®)
- Überprüfung etwaiger Matrixeffekte bei der FTIR-Analyse durch KPA
- Gravimetrische Bestimmung des ausgefallenen Weinsteins nach 70, 120, und 175 Tagen
- Bestimmung der Restgehalte an Weinsäure und Kalium nach 175 Tagen Lagerung
- Bestimmung der Grundparameter gemessen mit einem FTIR im Wein nach 175 Tagen Lagerung und Beurteilung etwaiger Veränderungen durch Zusatz von KPA

Material und Methoden

- Je 300 Liter Wein der Sorten Rheinriesling und Chardonnay
- Stabilisierungsmittel:
 - Metaweinsäure (Metavin® Opti)
 - CMC (VinoStab®)
 - KPA (Zenith® UNO)
 - L(+) Weinsäure, Kaliumchlorid

Material und Methoden

- Fourier transformierte Infrarot-Spektroskopie (FTIR)
- CheckStab®
- Atomabsorptionsspektroskopie (AAS)
- Analysenwaage, Trockenschrank, Laborutensilien,...
- Glasballons, Flaschen, Etiketten, Schrauber,...

Durchführung – Analysen der Grundweine

Sorte	Titrierbare Säuren b. a. WS (g/L)	Weinsäure (g/L)	Kalium (mg/L)		
Rheinriesling	6,3	3,6	506		
Chardonnay	5,6	2,4	702		

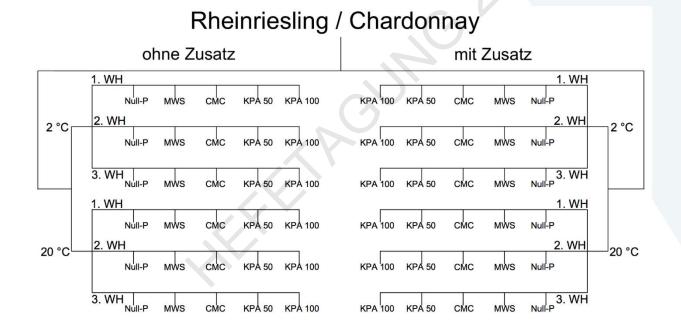
Prüfung der Eiweißstabilität

Eine Einrichtung des Bundesministeriums für Nachhaltigkeit und Tourismus

Durchführung

• Zusatz der Stabilisierungsmittel

Stabilisierungsmittel	Handelsname	Firma	Aufwandmenge
Metaweinsäure	Metavin [®] Opti	Erbslöh	10 g/hl
СМС	VinoStab [®]	Erbslöh	130 ml/hl
КРА	Zenith uno®	Enartis	100 ml/hl
КРА	Zenith uno®	Enartis	50 ml/hl

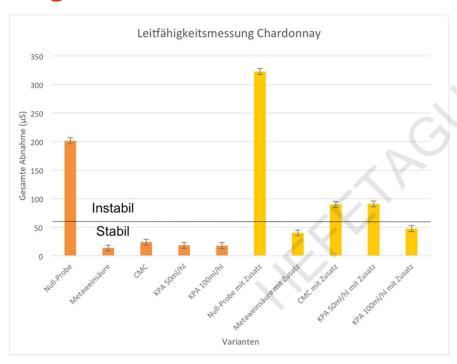

Eine Einrichtung des Bundesministeriums für Nachhaltigkeit und Tourismus

- Veränderung des Weinsäure- und Kaliumgehalts
- Abfüllung, Etikettierung
- Lagerung
 - Bei 2 °C und bei 20 °C
 - Für 70, 120 bzw. 175 Tage

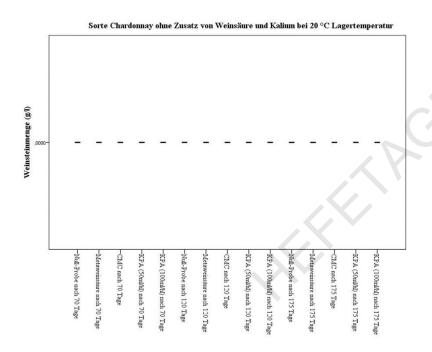
Eine Einrichtung des Bundesministeriums für Nachhaltigkeit und Tourismus

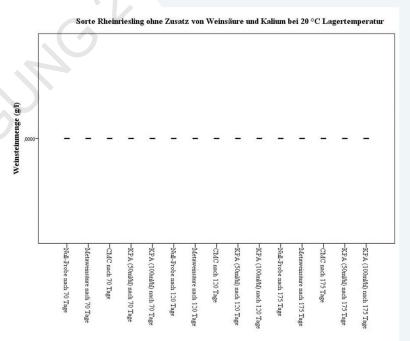
- Leitfähigkeitsmessung mittels CheckStab®
- Analyse der Grundparameter im Wein mittels FTIR
- Auswiegen des Weinsteins
 - Filtration
 - Trocknen der Filter im Wärmeschrank (25 min bei 160 °C)
 - Auswiegen mittels Analysenwaage

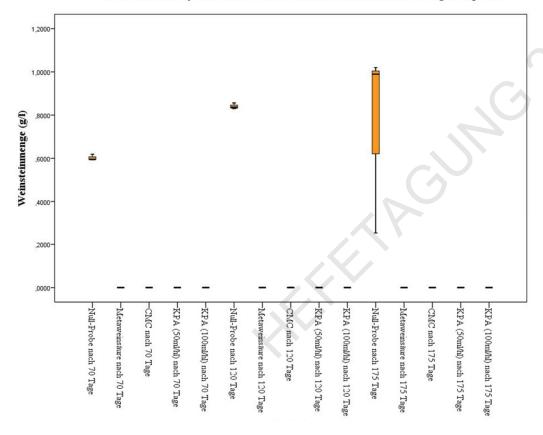
- Bestimmung der Restgehalte an Weinsäure, Kalium, Calcium nach 175 Tagen Lagerung
- Analyse der Grundparameter im Wein mittels FTIR nach 175 Tagen Lagerung



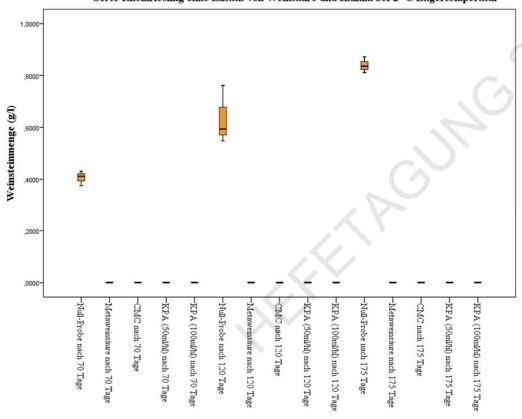



Ergebnisse: CheckStab®



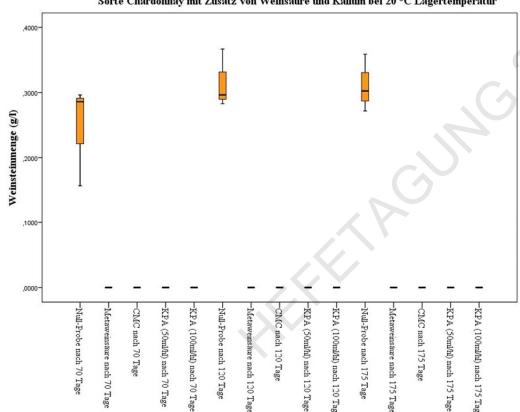


Ergebnisse: 20 ° C ohne Zusatz von WS und K


Sorte Chardonnay ohne Zusatz von Weinsäure und Kalium bei 2 °C Lagertemperatur

Chardonnay ohne Zusatz von WS/K 2°C Lagertemperatur

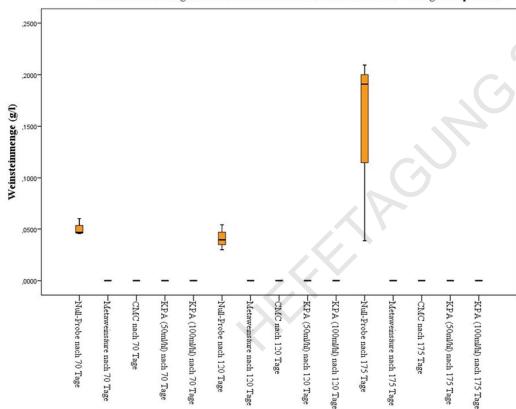
Sorte Rheinriesling ohne Zusatz von Weinsäure und Kalium bei 2 °C Lagertemperatur



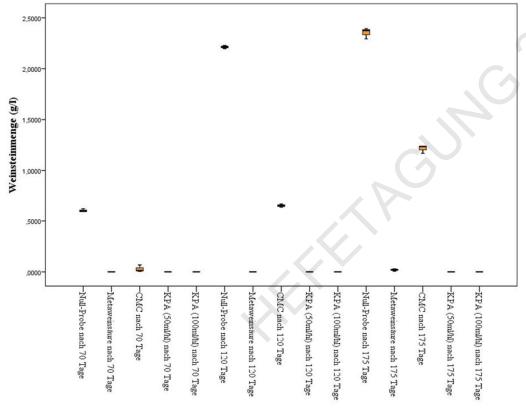
Rheinriesling ohne Zusatz von WS/K 2°C Lagertemperatur

Eine Einrichtung des Bundesministeriums für Nachhaltigkeit und Tourismus

Sorte Chardonnay mit Zusatz von Weinsäure und Kalium bei 20 °C Lagertemperatur

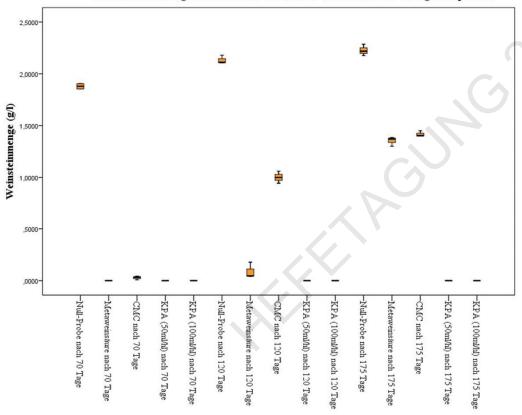


Chardonnay mit Zusatz von WS/K 20 °C Lagertemperatur


Sorte Rheinriesling mit Zusatz von Weinsäure und Kalium bei 20 °C Lagertemperatur

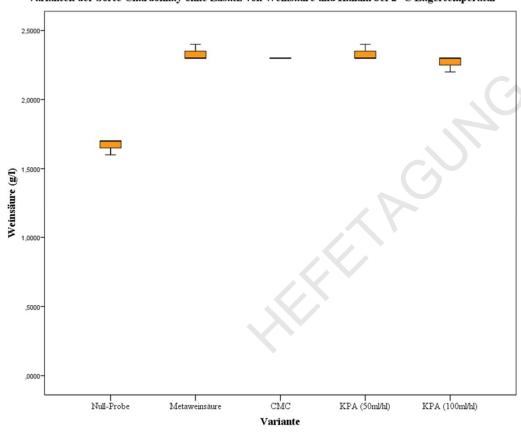
Rheinriesling mit Zusatz von WS/K 20 °C Lagertemperatur

Sorte Chardonnay mit Zusatz von Weinsäure und Kalium bei 2 °C Lagertemperatur

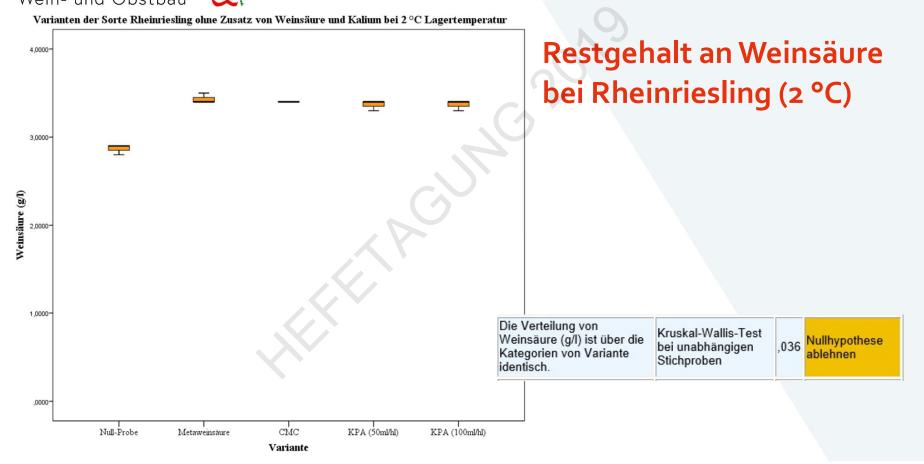


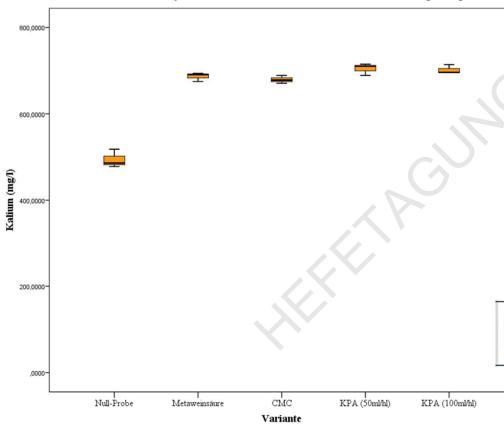
Chardonnay mit Zusatz von WS/K 2 °C Lagertemperatur

Eine Einrichtung des Bundesministeriums für Nachhaltigkeit und Tourismus


Sorte Rheimiesling mit Zusatz von Weinsäure und Kalium bei 2 °C Lagertemperatur

Rheinriesling mit Zusatz von WS/K 2°C Lagertemperatur


Varianten der Sorte Chardonnay ohne Zusatz von Weinsäure und Kalium bei 2 °C Lagertemperatur


Restgehalt an Weinsäure bei Chardonnay (2 °C)

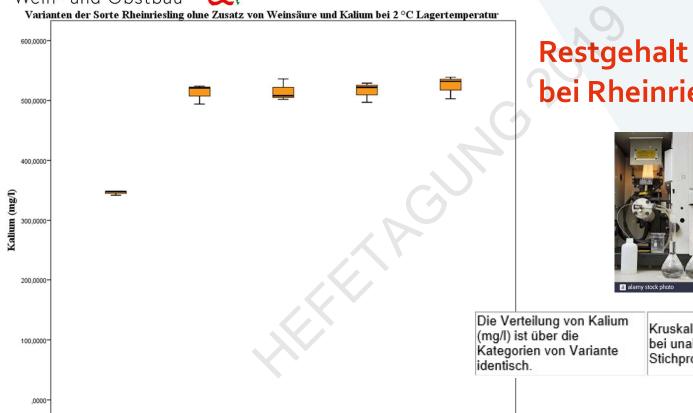
KruskalDie Verteilung von Weinsäure (g/l) Wallis-Test
ist über die Kategorien von Variant ünabhängig
identisch.
en
Stichproben

Varianten der Sorte Chardonnay ohne Zusatz von Weinsäure und Kalium bei 2 °C Lagertemperatur

Restgehalt an Kalium bei Chardonnay (2 °C)

Kruskal-Die Verteilung von Kalium (mg/l) is Wallis-Test über die Kategorien von Variante unabhängig identisch. Stichproben

Nullhypothe se ablehnen


HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Null-Probe

Metaweinsäure

CMC

Variante

KPA (50ml/hl)

KPA (100ml/hl)

Restgehalt an Kalium bei Rheinriesling (2 °C)

Stichproben

Kruskal-Wallis-Test bei unabhängigen

Nullhypothese beibehalten

Einfluss von KPA auf die FTIR-Analyse (Chardonnay)

	Relative Dichte	Vorh. Alkohol Vol%	Glucose g/l	Fructose g/l	Zuckergehalt (G+F) g/l	Titrierbare Säuren (b.a. WS) g/l	pH- Wert	Wein- säure g/l	Äpfel- säure g/l	Milch- säure g/l	Flüchtige Säuren g/l	Zitronen- säure g/l
Null- Probe	0,9991	13,0	n.n.	1,7	1,8	5,7	3,30	2,3	2,0	n.n.	0,3	0,1
KPA 50 ml/hl	,,,,,,	J.		.,	1		3,3					·
	0,9911	13,0	n.n.	1,6	< 1,7	5,7	3,30	2,3	2,0	n.n.	0,3	0,1
Δ	0,0080	0,0		0,1	0,1	0,0	0,0	0,0	0,0	n.n.	0,0	0,0
KPA 100 ml/hl												
	0,9911	13,0	n.n.	1,5	< 1,7	5,8	3,30	2,4	2,1	n.n.	0,4	0,1
Δ	0,0080	0,0	n.n.	0,2	0,1	0.1	0,00	0,10	0,1	n.n.	0,1	0,0
	0,0000	0,0	11.11.	0,2	0,1	0,1	0,00	0,10	0,1	11.11.	0,1	0,0

Einfluss auf die FTIR-Analyse (Rheinriesling)

	Relative Dichte	Vorh. Alkohol Vol%	Glucose g/l	Fructose g/l	Zuckergehalt (G+F) g/l	Titrierbare Säuren (b.a. WS) g/l	pH- Wert	Wein- säure g/l	Äpfel- säure g/l	Milch- säure g/l	Flüchtige Säuren g/l	Zitronen- säure g/l
Null- Probe												
	0,9907	13,1	n.n.	< 1,1	< 1,7	6,4	3,15	3,5	n.n.	0,9	0,6	n.n.
KPA 50 ml/hl												
	0,9908	13,1	n.n.	< 1,1	< 1,7	6,4	3,14	3,4	n.n.	0,9	0,6	n.n.
Δ	0,0001	0.0	n.n.	0.0	0.0	0.0	0.01	0.1	n.n.	0.0	0.0	n.n.
KPA 100 ml/hl												
	0,9907	13,1	n.n.	< 1,1	< 1,7	6,5	3,15	3,4	n.n.	0,9	0,6	0,1
Δ												
	0,0000	0,0	n.n.	0,0	0,0	0,1	0,0	0,1000	n.n.	0,0	0,0	n.n.

Zusammenfassung

- · Kein Unterschied zwischen den getesteten Sorten
- Metaweinsäure beim ersten Messzeitpunkt noch stabil
- CMC bereits beim ersten Messzeitpunkt instabil
- KPA hält Stabilität bei allen Varianten
- Keine Matrixeffekte bei der FTIR-Analyse
- Aussagen von CheckStab haben sich nicht bestätigt

Danksagung

Miklos Jobbagy (Fa. Enartis)

- Abteilung Chemie
 - Mag. Elsa Patzl-Fischerleitner
 - DI Stefan Nauer
 - Susanne Schneider
 - Ingrid Hofstätter
 - Veronika Schober

Besten Dank an unsere beiden fleißigen, verlässlichen und erfolgreichen Diplomanden Markus Willach und Mario Strauss, die die Arbeit sogar weiter betreuen (Langzeitstudie, Rotwein, Traubensaft....)

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT